
DualDB: An Efficient LSM-based Publish/Subscribe Storage
System

Mohiuddin Abdul Qader Vagelis Hristidis
Department of Computer Science & Engineering, University of California Riverside

{mabdu002,vagelis}@cs.ucr.edu

ABSTRACT
Publish/Subscribe systems allow subscribers to monitor for events
of interest generated by publishers. Current publish/subscribe query
systems are efficient when the subscriptions (queries) are relatively
static – for instance, the set of followers in Twitter – or can fit in
memory. However, an increasing number of applications in this era
of Big Data and Internet of Things (IoT) are based on a highly dy-
namic query paradigm, where continuous queries are in the millions
and are created and expire in a rate comparable, or even higher, to
that of the data (event) entries. For instance moving objects like
airplanes, cars or sensors may continuously generate measurement
data like air pressure or traffic, which are consumed by other moving
objects.

In this paper we propose and compare a novel publish/subscribe
storage architecture, DualDB, based on the popular NoSQL Log-
Structured Merge Tree (LSM) storage paradigm, to support high-
throughput and dynamic publish/subscribe systems. Our method
naturally supports queries on both past and future data, and generate
instant notifications, which are desirable properties missing from
many previous systems. We implemented and experimentally evalu-
ated our methods on the popular LSM-based LevelDB system, using
real datasets. Our results show that we can achieve significantly
higher throughput compared to state-of-the-art baselines.

CCS CONCEPTS
•Information systems→DBMS engine architectures; Key-value
stores; Location based services; Query optimization;

KEYWORDS
Log-Structured Merge Tree, LevelDB, Publish/Subscribe, NoSQL,
Continuous Query, Instant Notification, Triggers, Big Data

ACM Reference format:
Mohiuddin Abdul Qader Vagelis Hristidis. 2017. Du-
alDB: An Efficient LSM-based Publish/Subscribe Storage System. In Pro-
ceedings of SSDBM ’17, Chicago, IL, USA, June 27-29, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3085504.3085528

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM ’17, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5282-6/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3085504.3085528

1 INTRODUCTION
In this age of big data and Internet of Things (IoT), large amounts
of data are generated, stored, and used by a diverse set of entities –
devices, vehicles, buildings, software, and sensors. It is challenging
to efficiently ingest, manage, read and deliver the generated data to
millions of users or entities in real time. Publish/Subscribe systems
are used in many applications, such as social networks, messaging
systems, and traffic alerting systems.

As a running example application, consider users who are driving
and subscribe to nearby traffic or other incidents (accident, crime,
roadwork, fire, natural disaster, protest etc). Every time a user moves
to a new location (i.e., a geospatial cell) they need to subscribe to
events/publications in the new location for a time duration starting
from the near past to the near future – e.g., to know what happened
in the last one minute and what will happen in the next one minute
until the user moves to another cell. These subscriptions are highly
dynamic as they come and go every few seconds. At the same time,
users are publishing incidents. As millions of users are moving
and subscribing to events, these large streams of subscriptions and
publications must be stored and managed efficiently. As another
application, an airplane continuously queries for data in its path such
as turbulence, wind, air pressure, etc.

Challenges and requirements A key component of a
Publish/Subscribe system is its storage module, which stores both
the subscriptions and the publications. As described in detail in Sec-
tion 2, the storage modules of existing Publish/Subscribe systems
have several limitations, which make them inadequate for modern
IoT applications. First, the number of subscriptions (continuous
queries) is assumed to be relatively small to fit in main memory,
which may not always be true. Second, the subscriptions are viewed
as relatively static, for example, a user infrequently modifies her
following list in Twitter. This is not the case in applications such
as traffic alerting or aviation where vehicles or airplanes subscribe
to different cells of interest every few seconds. Third, most of the
systems support only queries on future data. In contrast, an airplane
may need to know the conditions in an area in the last few minutes
and the next few seconds, so a combination of past and future data
may be desired. The publications may also have an expiration time;
for example, a snow storm warning might have a certain time limit.

A baseline solution to realize a Publish/Subscribe system, which
we experimentally evaluate, is to maintain a list of subscriptions
(queries) and periodically submit these repetitive queries on the pub-
lications database. A problem with this approach is that one cannot
get notification at the exact time of an incident. Also, this solution
wastes resources as the same query will keep getting submitted even
if no new matching publications exist. Finally, some publications
with short expiration time may be completely missed.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Mohiuddin Abdul Qader Vagelis Hristidis

To summarize, our goal is to design and build a Publish/Subscribe
storage system with the following properties: (1) Scale to millions
of dynamically changing subscriptions and publications per minute,
that is, both subscriptions and publications arrive and expire at
a rapid pace. (2) After a new publication, immediately identify
and notify matching subscribers (as in traditional database triggers,
discussed in Section 2), that is, not follow a periodic check paradigm.
(3) Subscriptions or publications may have validity time periods.
Subscriptions may request past data in addition to future data. (3)
The subscriber should assume that all the matching publications
should reach her, that is, there is no data loss which may occur with
periodic check systems.
Proposed work To support these properties we propose an efficient
storage framework on top of LSM-based NoSQL databases. We
argue that NoSQL databases – such as Cassandra [9], BigTable [3],
AsterixDB [1] and LevelDB [7] – provide the right primitives on
top of which we can design an efficient Publish/Subscribe storage
system that addresses the above limitations. Specifically, LSM-
based databases, compared to relational databases, offer fast write
throughput and fast lookups on the primary key of a data entry.

To efficiently answer simple matching subscriptions, we propose
a novel DualDB approach where both queries and data entries are
stored in the same keyspace of the same database. We prefer to
use DualDB instead of maintaining two separate databases, one
for subscriptions (queries) and one for publications (data records)
and thus suffer from a high rate of random disk accesses. We
show that it is efficient compared to a baseline based on repeti-
tive queries (RepQueries) mentioned above, when queries simply
perform lookups, e.g., return all events (publications) inside my
current cell id.

We compare our systems with a state-of-the-art pub/sub system
Padres [6]. We chose Padres because it is open source and is easy
to modify to fit our use-case. Padres supports query on historic/past
data and uses the PostgreSQL database system. We show that Padres
does not scale with the number of subscriptions and the system
runs out of memory and crashes very quickly because they use an
in-memory module to handle the subscriptions.

To summarize, we make the following contributions in this paper:
• We propose and implement a novel approach DualDB to

efficiently support massive amount of highly dynamic sub-
scriptions and publications on LSM-based storage systems
(Section 4).

• We implemented our methods on LevelDB and conducted
extensive experiments with various workloads with differ-
ent subscription to publication ratios. For that, we extended
LevelDB to handle lists of values per key (Section 5). Our
experiments show that our DualDB approaches perform
up to 1000% faster than baseline RepQueries (repetitive
queries) and up to 3000% faster than a state-of-the-art
pub/sub system Padres (Section 6).

The rest of the paper is organized as follows. Section 2 reviews
the related work. Then, Section 3 presents framework of the system,
Finally, Section 7 concludes and presents future directions.

2 RELATED WORK AND BACKGROUND
Most of the academic work on pub/sub mainly has studied how to
efficiently route the message through the distribAsterixDb recently

added support for complex continuous queries using periodic repeti-
tive executionfor pub/sub systems. There are variations of pub/sub
systems supporting content or topic based subscription [5] Very few
works studied the storage architecture of pub/sub systems. Padres is
a popular open-source pub/sub system which supports subscriptions
on future and historic data, using a PostgreSQL database inside
each broker [8]. However, it does not scale with the number of
subscriptions as we shown in our experiments.

Continuous queries in databases may be implemented using trig-
gers [10]. However, they are only able to handle a very small number
of triggers on a table [4], whereas we want our continuous queries
to scale to millions. Further, triggers have a relatively high creation
and deletion cost, which makes them inappropriate for dynamically
changing subscriptions. Systems like NiagraCQ [4] proposed tech-
niques to group continuous queries with similar structure, to share
common computation. However, these works assume that the queries
fit in memory and are relatively static, that is, they do not scale to ar-
bitrary numbers of queries nor to rapidly added and expiring queries.
Further, these models generally only support “future-only” queries,
that is, queries that only return future data items. AsterixDB re-
cently added support for complex continuous queries using periodic
repetitive execution [2].

Background on LSM tree and LevelDB. An LSM tree generally
consists of an in-memory component (a.k.a. Memtable) and several
immutable on-disk components (a.k.a SSTables). Each component
consists of several data files and each data file consists of several
data blocks. All writes go to the in-memory component first and
when filled, they flush into disk. A background process (compaction)
periodically merges the smaller components to larger components as
the data grows. A read (GET) on an LSM tree starts from Memtable
and then goes to the disk compoenents until the desired entry is
found, which makes sure the newest (valid) version of an entry
will be returned. The SSTables of this LSM-based LevelDB are
organized into a sequence of levels where Level-(i+1) is 10 times
larger than level-i in LevelDB. Each level (component) consists of a
set of disk files (SSTables), each having a size around 2 MBs. The
SSTables in the same level may not contain the same key (except
level-0).

3 FRAMEWORK
To support pub/sub operations on top of a NoSQL data store, we
define a basic API as shown in Table 1. To illustrate the func-
tionality of this API, consider the motivating application described
in Section 1, where Subscriptions S (API call SUBSCRIBE (ID,
Subscription− JSON)) are generated by mobile users driving in
their vehicles, who are interested to know about recent events, such
as accidents or weather changes, close to their current location LS.
“Recent” may refer to events that happened in the time interval
Tmin = TS−10 sec, Tmax = TS +10 sec, where TS is the query (sub-
scription) time. Note that the time interval associated with each
subscription S can include both past and future time ranges. If the
intervals only contained future times, no storage would be needed
for the publications.

Whenever there is a new publication (API call PUBLISH (ID,
Publication− JSON)), i.e. an event occurred, we look for all the
stored subscriptions to notify them if the ID (cell-id for moving

DualDB: An Efficient LSM-based Publish/Subscribe Storage System SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Table 1: Set of Operations for Pub/Sub Storage Framework

Operation Description
SUBSCRIBE
(ID,
Subscription−
JSON)

Write the Subscription in Subscription
Storage with ID as primary key and re-
turn the list of matching and valid his-
toric/past publications from Publication
storage those had been published within
Tmin,Tmax time interval.).

PUBLISH
(ID,
Publication−
JSON)

Write Publication to storage with ID as pri-
mary key and return the list of matching
and valid Subscribers who subscribed for
this ID (i.e. topic/region) from Subscrip-
tion storage.

objects or topic-id for content-based pub/sub systems) of the publica-
tion matches that of the subscription. We emphasize that subscription
time intervals span both the past and the future, we need a storage
framework to store the subscriptions as well as the publications.

We define ID as the Key that joins subscriptions and publications,
and Subscription−JSON and Publication−JSON in JSON format
as the value in our Key-Value Storage. They hold the attributes in
Table 2. We will use there terms of Table 2 throughout the paper.
Note that subscriptions may also specify additional conditions, such
as keyword matching, for instance, return data close to me that
contain the term “accident.” Such conditions can be supported by a
postprocessing (filtering) layer on top of the location-constrained or
topic-constrained results.

Table 2: Set of Attributes and Terminologies

ID cell-id/topic-id/product-id
TS, TP Execution time of a Publication and Sub-

scription
Tmin,Tmax Time interval in Subscription. Tmax is the

expiry time for Subscription/Publication.
Sid,Eid Subscription and Publication Identifier
Desc Description text of a Publication
Subscription−
JSON

Body of a Subscription in JSON { Tmin,
Tmax, TS, Sid }

Publication−
JSON

Body of a Publication in JSON { TP, Tmax,
Pid, Desc }

4 PROPOSED APPROACHES
We propose and implement DualDB approach to efficiently realize
the API defined in Section 3, while providing instant response times
to publications. DualDB approach maintains a optimized single
database holding both subscriptions and data records/publications.
To compare our approach with reasonable baseline, we also propose
a baseline approach RepQueries which perform queries via repeti-
tive channel which can not provide instant response. For both the
approaches, we use the list storage mechanism described in Sec-
tion 5, which maintains a lazily updated value list instead of a single
value associated with a key (i.e. instead of single (key,value) pair we
have fragmented value list for a key throughout the storage). This
system efficiently remove the expired items from its storage during
background compaction based on their expiry time (Tmax).

4.1 Single Database Approach (DualDB)
As discussed in Section 2, previous works assume that the subscrip-
tions are stored in memory, which is not realistic in our scenario.
A key observation is that if subscription queries and publications
could be stored in the same key space, then a single database (in
LevelDB terminology) could store both of them. Then query and
data insertions would only need to access a single database, which
could reduce the number of disk accesses and more importantly
improve the caching efficiency. Further, the compaction cost might
be decreased, as we only have to compact a single database.

(a) Processing of a SUBSCRIBE Op. (b) Processing of a PUBLISH Op.

Figure 1: DualDB Approach
We propose to study the properties and performance of using

a single database, which we call a dual database (DualDB). The
key idea is that the key-value data organization must be modified to
accommodate a list of subscription and publication items in the value.
That is, for a given ID (cell-id or topic-id) in our example, both the
list of subscriptions and publications will be stored in the posting list
of this ID. As LevelDB does not allow same key inside a component,
we need to change the storage architecture to allow the disk and
memory components holding at most two lists associated with the
same key/cell-id. We assign a bit with the primary key (IDS, IDP)
which will state whether it’s a list of publications or subscriptions.
Figures 1a and 1b show, respectively, how new query and new
publication of events are processed in the proposed DualDB.

For every new subscription query, we must, in parallel, insert
subscription in DualDB and query from DualDB for matching
events/topics. The query GetData

(
IDP,TS,Tmin

)
returns the list

of events which is published within time interval Tmin,TS and are
valid (i.e.did not expire) on that time. Since the postings list could
be scattered in different levels (Section 5, GetData needs to merge
them to get a complete list. For this, it checks the Memtable and
then the SSTables, and moves down in the storage hierarchy one
level at a time.

For each new publication, we must, in parallel, check if an active
subscription query matches it, and also insert it into the DualDB.
The matching function GetSubscribers

(
IDS,TP

)
returns a list of

subscribers who subscribed to some events/topics on same ID and
the query is still valid and if the publication time TP is within time
interval [Tmin,Tmax] of the query. The procedure of GetSubscribers
operation is similar to GetData operation moving down level by
level in LSM storage to look for matching subscriptions.

As we are combining two databases into one database containing
two lists, the storage components are changed accordingly to hold
any such two heterogeneous data. Figure 2 show snapshots of the
entries in the corresponding databases for the DualDB approach.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Mohiuddin Abdul Qader Vagelis Hristidis

Figure 2: Snapshot of storage components for our LevelDB-
style LSM database DualDB.

Here we can see that DualDB is holding posting lists of subscrip-
tions (S1,S2,...) and publications (P2,P1,...) in same components
with same key ID which holds a flag (C1S,C1P) that distinguishes
between them. As in each component the records are sorted by
key, these two lists will always be co-located with each other. This
should allow improvements in both LevelDB memory cache and the
operating system page cache. This figure assume a leveled storage ar-
chitecture (as in LevelDB and Cassandra); a stack-based architecture
can be handled similarly.

4.2 Repetitive Queries Baseline (RepQueries)
DualDB approach discussed above support dynamic and massive
amount of continuous queries on a storage framework holding lazily
updated lists, which returns matching subscribers whenever an
topic/event is published. This feature enables the system to support
instance response to the user via continuous channel. To compare
our system, we also prepared a baseline RepQueries which relies
on repetitive channel and can not guarantee instance response. This
approach is used in many pub/sub systems where they use a broker
management as a middle-ware between database and the users. Here
the user/broker is responsible for submitting the query repetitively to
the publication database to find out the matching events/topics. Note
that the user/broker is now responsible to detect duplicate data if
some consecutive time range in the query intersects with each other
resulting in return of duplicate publications. Also as the events are
highly dynamic, some of them might expire in between the repetitive
queries and user can potentially face missing data.

Figure 3: RepQueries Approach: Processing of SUBSCRIBE
and PUBLISH Operation

This approach only requires a database of publications. As peri-
odic queries are issued from client application, and there is no need
for instant response, we do not need to store the queries for future
publications. To compare baseline with our proposed approaches,
we converted each SUBSCRIBE operation into 10 repetitive query
where we divide the time interval

[
Tmin,Tmax

]
into 10 intervals. First

it will issue a historic query on past data with time interval [Tmin,TQ].
Then it repetitively issue query and perform GetData operation af-
ter every

(
Tmax−TQ

)
/10 sec with time interval [TS, t1], [TS, t1], ...,

and [t10,Tmax]. We consider this as equivalent to one SUBSCRIBE
operation in instance-response approaches. The GetData operation
follows the same procedure on Publication Database as in DualDB.

Here the PUBLISH operation does not issue any read, it only
writes the new publication to the database. So PUBLISH will be
very fast and SUBSCRIBE will be very slow for RepQueries ap-
proach than our other two approaches. Figures 3 shows, how a new
subscription and a new publication of events are processed in the
RepQueries.

5 ENABLE VALUE LISTS IN LEVELDB
The standard LevelDB implementation, as any key-value store, only
support the storage of <key,value> pairs. However, to realize our
pub/sub storage algorithms, we need to store <key, list<value» pairs,
e.g., to store all publications for a single ID. In this section we
discuss how we modify LevelDB to handle lists of values instead
of a single value for every key. For example, the list of events for a
single cell-id is stored as a value list with cell-id as key.

SSTables organized into levels in LSM tree based LevelDB and
their compaction policy ensures only one unique key at each level.
For our problem, we do not want uniqueness in primary key as
we assume that for both SUBSCRIBE and PUBLISH operation, the
location or cell-id is the primary key and we will match subscriptions
with publications using this key. So, instead of one record associated
with a key we will have a posting list. So for each insertion with
non-unique primary key/cell-id, we add the new record with the
current list of records instead of dropping the old record. The naive
way is to perform an in-place update of the list by issuing a read on
the current list, appending the new data to the list and writing back
to the storage. Background compaction later will discard the old
list. But here the main drawback is that each write becomes very
expensive, as we need to read a large list. High write throughput
is one of the fundamental features of NoSQL databases which we
can not compromise. Also we may have a lot of invalid large lists
throughout all the levels in SSTables, which will waste a lot space.

To solve this problem we implemented a lazy update strategy on
the postings list. When a new write/Put is issued on a record, we do
not look for existing value lists associated with the same key/cell-id
in the disk. We simply write them to the memtable. If there is a
existing list in the memtable, we perform in-place update on the
list in constant time. Memtable is flushed to SSTables when it is
full and these SSTables are compacted later to move to lower levels.
We modify this compaction strategy appropriately, where instead
of discarding old records, we merge lists associated with same key
and hence eventually large lists are created in lower levels. Now
we have fragmented lists associated with a key throughout different
levels. When we issue a read on key, instead of returning the record
on upper level, it continues to search level by level to collect the

DualDB: An Efficient LSM-based Publish/Subscribe Storage System SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Figure 4: Writing data to Storage containing lazy updated value lists and their compaction.

fragmented lists. Lets illustrate the lazy update strategy on posting
lists with an example.

Assume the current state of a Publication database right after the
following sequence of publish operations PUT(C1,P1), ..., PUT(C1,P2),
..., PUT(C2,P3), PUT(C2,P4),..., PUT(C1,P5). Figure 4 depicts the
state of the storage components (i.e. SSTables and Memtable) after
these operation. We can see value list of C1 and C2 are fragmented
in components of different levels. Then two operation PUT(C1,P6),
PUT(C2,P7) are issued and we show in the Figure 4 how it affects
the current lists and how these lists are lazily updated after com-
paction. We first see the P6 is added to the list of C1 with an in-place
update and a new record C2->P7 was created inside memtable. Now
after some compaction, these lists are moved to lower levels and we
can see they are compacted and combined into larger lists.

6 EXPERIMENTS
6.1 Experimental Setup
We ran our experiments on a machine with the following configura-
tion: Processor of AMD Phenom(tm) II X6 1055T and 8GB RAM,
with Ubuntu version 15.04.

Data and Query Workload. We used Twitter streaming API to
collect about 15 millions geotagged tweets taking 12 GB (in JSON
format), located within New York State. We use this dataset to gen-
erate our desired workloads for the experiment. We ran experiments
using different Subscription to Publication ratios. As there are too
many parameters, we set the time intervals for each query and expi-
ration time of each event to a constant value: all subscriptions have
Tmin as 10 seconds behind current time TS and Tmax as 10 seconds
ahead of TS, and all the publications have expiration time (Tmax) as
20s ahead of current time TP.

To simulate a highly dynamic publish/subscribe model, we gener-
ated different workloads containing a mix of dynamically expiring
subscriptions and publications from the real twitter dataset. Our
workload generator considers each tweet as either a subscription or
a publication depending on the Subscription-to-Publication ratio.

As all our tweets were collected within New York State, we use
the bounding box rectangle around New York State and partition it to
generate 500∗500 uniform sized cells each having a unique identifier
cell-id. We map the Geo-location of the tweet to appropriate cell-id
and use this cell-id as a primary key for input. If the tweet is an event
(publication), the text is considered as event description. Tweet ID
is used as either subscriber ID or publication ID. The time intervals
are set according to the execution time of that particular operation
as discussed above. In our dataset, as we have about 0.25 million
number of cells and about 15.3 million tweets, average number
of tweets per cell is about 60 and as described, these tweets are
converted into events and subscriptions.

Padres Baseline. In addition to the repetitive queries baseline
(RepQueries) described in Section 4.2, we also compare to a pop-
ular Pub/Sub system, Padres. We understand that Padres has a
client-server architecture, which may incur additional overhead in
delivering a subscription result, but we show that the performance
difference is quite dramatic. First, we have to express our problem
setting using Padres’ model. For that, we convert our workload
into Padres subscription and publication operations. Padres supports
historic subscriptions on past queries. So, each subscriptions in our
dataset is equivalent to one historic subscription and one regular
subscription in Padres. Each event publication is also converted to a
publish operation in Padres. We installed Padres locally containing
one broker and two clients connecting to the broker. One client is
subscribing queries and the other client is publishing events. For
clarification, let’s illustrate the dataset conversion with an example.
Suppose at TQ, a query with cid as cell-id and interval [Tmin,Tmax] is
issued. We then convert it to a composite subscription (Expression 1)
and a regular subscription (Expression 2).

CS
[
class,eq,historic

]
,
[
subclass,eq,events

]
,[

T,<,TQ
]
, ...,

[
ID,eq,cid

]
&
[
T,>,Tmin

]
, ...,

[
ID,eq,cid

]
(1)

S{
[
class,eq, publication

]
,
[
T,<,Tmax

]
, ...,

[
ID,eq,cid

]
} (2)

A new generated event publication at TP with cid as cell-id and Tmax
as expiration time will be converted to the following publication
operation (Expression 3).

P
[
class, publication

]
,
[
T,TP

]
,
[
desc,any

]
,
[
ID,cid

]
(3)

6.2 Experimental Results
We conduct our experiments on workloads for simple matching
subscription with different subscription-to-publication ratios, which
represent different use cases.

Simple Subscriptions. Figures 5 and 6 show the overall, SUB-
SCRIBE and PUBLISH performance of all systems Subscription
heavy (Subscription

Publication = 3) and Publication heavy (Subscription
Publication =

1
3)

workloads, respectively. In all figures, we record the performance
once per million operations. We display the cumulative total time
taken for both PUBLISH and SUBSCRIBE operation separately and
also collectively and calculate average time per operation in every
million operations.

Figures 5 and 6 show that if the system relies on repetitive queries
instead of instant response queries, it can not scale to millions of
operations. As RepQueries does not issue any read after each publi-
cation, and only issues a write to a single database, PUBLISH has
very good performance as expected. But SUBSCRIBE has bad per-
formance as RepQueries. The overall performance is far worse than
our proposed instant-response variant. DualDB approach shows

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA Mohiuddin Abdul Qader Vagelis Hristidis

 100

 1000

 10000

 2 4 6 8 10 12 14

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

DualDB
RepQueries

Padres

(a) Overall performance

 100

 1000

 10000

 2 4 6 8 10 12 14

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

DualDB
RepQueries

Padres

(b) SUBSCRIBE performance

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

DualDB
RepQueries

Padres

(c) PUBLISH performance

Figure 5: Performance of different storage variants for simple subscription queries on Subscription Heavy Workload

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

DualDB
RepQueries

Padres

(a) Overall performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

DualDB
RepQueries

Padres

(b) SUBSCRIBE performance

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 6 8 10 12 14

T
im

e
 p

e
r

O
p

 (
µ

s)

Number of Op (million)

DualDB
RepQueries

Padres

(c) PUBLISH performance

Figure 6: Performance of different storage variants for simple subscription queries on Publication Heavy Workload

about 1000% better performance than RepQueries for Subscription
heavy workload, and 300% better for Publication heavy workload.

We see in Figures 5 and 6 that Padres performs poorly not only
compared to our DualDB approach, but also to the repetitive base-
line. Also, in our experiments Padres is not able to cope with the
increasing number of subscriptions, and runs out of memory very
quickly (even before 2 million operations) and the system crashes.
This is because it relies on an in-memory data structure to manage
subscriptions and fails to cope with a very large number of queries.
Note that we allocated maximum memory for Padres (i.e. 8GB) and
it still runs out of memory. Here we can see that even if we have
sufficient memory to support small number of subscriptions, the use
of traditional SQL-like database perform much worse (up to 300%)
than even our baseline RepQueries approach.

7 CONCLUSIONS AND FUTURE WORK
In this paper we present an efficient storage and indexing approach
DualDB to achieve high throughput publish/subscribe on LSM-
based databases where both the number of subscriptions and publi-
cations are massive in scale and one or both of them can arrive and
expire with time. Our approaches support instant notifications. We
also consider a baseline approach that relies on repetitive queries.

We implement our storage framework on top of the popular LSM-
based LevelDB system and conduct extensive experiments using real
datasets. The experimental results show that DualDB outperforms
the state-of-the-art Padres pub/sub system (by up to 3000%) and also
outperform the repetitive baseline RepQueries (by up to 1000%).

In the future, we plan to extend this work to a distributed envi-
ronment and allow more complex subscription queries (e.g. sub-
scriptions on hierarchical attributes, subscriptions that do not match
based on a primary key conditions etc).

ACKNOWLEDGMENTS
This project is partially supported by NSF grants IIS-1447826 and
IIS-1619463.

REFERENCES
[1] Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-

Seok Kim, Michael J Carey, Markus Dreseler, and Chen Li. 2014. Storage
Management in AsterixDB. Proceedings of the VLDB Endowment 7, 10 (2014).

[2] Michael J Carey, Steven Jacobs, and Vassilis J Tsotras. 2016. Breaking BAD: a
data serving vision for big active data. In Proceedings of the 10th ACM Interna-
tional Conference on Distributed and Event-based Systems. ACM, 181–186.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. TOCS 26, 2 (2008), 4.

[4] Jianjun Chen, David J DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ:
A scalable continuous query system for internet databases. In ACM SIGMOD
Record, Vol. 29. ACM, 379–390.

[5] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. 2003. The many faces of publish/subscribe. ACM Computing Surveys
(CSUR) 35, 2 (2003), 114–131.

[6] Eli Fidler, Hans-Arno Jacobsen, Guoli Li, and Serge Mankovski. 2005. The
PADRES Distributed Publish/Subscribe System.. In FIW. 12–30.

[7] Google Inc. 2017. LevelDB. http://leveldb.org/. (Feb 2017).
[8] Hans-Arno Jacobsen, Vinod Muthusamy, and Guoli Li. 2009. The PADRES Event

Processing Network: Uniform Querying of Past and Future EventsDas PADRES
Ereignisverarbeitungsnetzwerk: Einheitliche Anfragen auf Ereignisse der Ver-
gangenheit und Zukunft. it-Information Technology Methoden und innovative
Anwendungen der Informatik und Informationstechnik 51, 5 (2009), 250–260.

[9] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (apr 2010), 35–40.

[10] Jennifer Widom and Sheldon J Finkelstein. 1990. Set-oriented production rules in
relational database systems. In ACM SIGMOD Record, Vol. 19. ACM, 259–270.

	Abstract
	1 Introduction
	2 Related Work and Background
	3 Framework
	4 Proposed Approaches
	4.1 Single Database Approach (DualDB)
	4.2 Repetitive Queries Baseline (RepQueries)

	5 Enable Value Lists in LevelDB
	6 Experiments
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusions and Future Work
	Acknowledgments
	References

