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ABSTRACT
NoSQL databases like key-value stores achieve fast write through-
put and fast lookups on the primary key. However, many applica-
tions also require queries on non-primary attributes. For that, sev-
eral NoSQL databases have added support for secondary indexes.
To our best knowledge, little work has studied how to support sec-
ondary indexing on pure key-value stores, which are a fundamental
and popular category within the NoSQL databases range.

We propose a novel lightweight secondary indexing technique on
log-structure merge-tree (LSM tree)-based key-value stores, which
we refer as “embedded index”. The embedded index, which utilizes
Bloom filters, is very space-efficient, and achieves very high write-
throughput rates, comparable to non-indexed key-value stores. It
is embedded inside the data files, that is, no separate index table
is maintained. To our best knowledge, this is the first work to
use Bloom filters for secondary indexing. The embedded index
also simplifies the transaction management, compared to alterna-
tive stand-alone secondary indexing schemes. For the cases when
range query on secondary attributes in embedded index is required,
we also propose to apply a modified version of interval tree to keep
track of the attribute value range in each data block to support that.

As a second contribution, we have defined and implemented two
“stand-alone indexing” techniques (i.e. separate data structures
maintained for secondary indexes) on key-value stores that borrow
ideas from the secondary indexing strategies used in column-based
NoSQL and traditional relational (SQL) databases.

We implemented all indexing schemes on Google’s popular open-
source LevelDB key-value store. Our comprehensive experimen-
tal and theoretical evaluation reveals interesting trade-offs between
the indexing strategies in terms of read and write throughputs. A
key result is that the embedded index is superior for high write-
throughput requirements. We created and published a realistic Twitter-
style read/write workload generator to facilitate our experiments.
We also published our index implementations on LevelDB as open
source.

1. INTRODUCTION
In the age of big data, more and more services are required to

ingest high volume, velocity and variety data, such as social net-

working data, smartphone Apps usage data and click through data
in large search/recommendation systems. NoSQL databases were
developed as a more scalable and flexible alternative to relational
databases. NoSQL databases, such as BigTable [13], HBase [18],
Cassandra [20], Voldemort [17], MongoDB [6] and LevelDB [4]
to name a few, have attracted huge attention from industry and re-
search communities and are widely used in products.

NoSQL systems like key-value stores are particularly good at
supporting two capabilities: (a) fast write throughput and (b) fast
lookups on the primary key of a data entry. However, many ap-
plications also require queries on non-key attributes which is a
functionality commonly supported in RDBMs. For instance, if a
tweet has attributes tweet id, user id and text, then it would be
useful to be able to return all (or more commonly the most re-
cent) tweets of a user. However, supporting secondary indexes in
NoSQL databases is challenging because secondary indexing struc-
tures must be maintain during writes, while also managing the con-
sistency between secondary indexes and data tables. This signifi-
cantly slows down writes, and thus hurts the system’s capability to
handle high write throughput which is one of the most important
reasons why NoSQL databases are used. Secondary indexes also
complicate the transaction management.

Table 1 shows the operations that we want to support. The first
three are already supported by existing key-value stores like Lev-
elDB. Note that the secondary attributes and their values are stored
inside the value of an entry, which may be in JSON format: v =
{A1 : val(A1), · · · ,Al : val(Al)}, where val(Ai) is the value for the
secondary attribute Ai. For example, a data entry that consists of
tweet id t3, user id u1 and text text3 can be written using PUT(t3,
{u1, text3}). Then, entry (u1, {t3}) should be added to the sec-
ondary index table for the user id attribute. However, there could
be an existing posting list of u1, e.g., it could be (u1, {t2,t1}). Thus
the new update should be merged with the existing posting list at
some point, so it eventually becomes (u1, {t3,t2,t1}).

Current NoSQL systems have adopted different strategies to sup-
port secondary indexes (e.g., on the user id of a tweet). For in-
stance, MongoDB uses B-tree for secondary index, which follows
the same way of maintaining secondary indexes as traditional RDBMs.

On the other hand, several log-structure merge-tree (LSM tree) [22]
based NoSQL systems (e.g., Cassandra) store a secondary index as
an LSM table (column family) similarly to how the data table is
stored, and perform append-only updates (which we refer as “lazy”
updates) instead of in-place updates. In particular, going back to the
example operation PUT(t3, {u1, text3}), recent versions of Cassan-
dra have adopted a lazy update strategy: it issues a PUT(u1, {t1})
in the user id index table without retrieving the existing postings
list for u1. The old postings list of u1 is merged with (u1, {t1}) at a
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Figure 1: Comparison between eager and lazy updates in stand-alone index, and embedded index, right after PUT(t3, {u1, text3}). We use
the notation key→ value. For simplicity, we do not show the text attribute.

Table 1: Set of operations in a key-value store.

Operation Description
GET(k) Retrieve value identified by pri-

mary key k.
PUT(k, v) Write a new entry 〈k,v〉 (or over-

write if k already exists), where
k is the primary key.

DEL(k) Delete the entry identified by
primary key k if any.

LOOKUP(A, a) Retrieve the entries with
val(A) = a, where A is a sec-
ondary attribute and a is a value
for this attribute

LOOKUP(A, a, K) Retrieve the K most recent en-
tries with val(A) = a.

RANGELOOKUP(A, a, b, K) Retrieve the K most recent en-
tries with a≤ val(A)≤ b.

later time, during the periodic compaction phase1. A drawback of
the lazy update strategy is that reads on index tables become slower,
because they have to perform this merging at query time. We have
implemented both eager and lazy stand-alone indexing strategies
for key-value stores that closely approximate the above described
strategies.

In addition to implementing and evaluating such stand-alone in-
dexes for key-value stores, we propose a novel lightweight sec-
ondary indexing approach, which we refer as “embedded index.” In
contrast to stand-alone indexes, the embedded index does not cre-
ate any specialized index structure. Instead, it attaches a memory-
resident Bloom filter [12] signature on each data block for each
indexed secondary attribute. Note that Bloom filters are already
popular in NoSQL systems to accelerate the lookup on the primary
key, but we propose for the first time also using them for secondary
attributes. In order to support range query on secondary attribute,
embedded index also maintains an in-memory data structure per in-
dexed attribute: a modified version of interval tree storing the range
of secondary attribute values in each data block in SSTable.

Figure 1 captures the differences between the three indexing strate-
gies (eager and lazy updates on stand-alone index, and embedded
index) on LSM-based key-value stores. In an LSM-style storage
structure, data are normally organized as levels (three levels shown

1Earlier versions of Cassandra handled this by first accessing the
index table to retrieve the existing postings list of u1, then writ-
ing back a merged posting list to the index table. Then the old
posting list is obsolete. Such “eager” updates degrade the write
performance.

in Figure 1 where the top is in-memory and the bottom two on
disk) with older data in lower levels, which are larger than recent
(upper) levels. Each orange rectangle in Figure 1 represents a data
file. The state shown is right after the following sequence of oper-
ations PUT(t1, {u1, text1}),...,PUT(t2, {u1, text2}),...,PUT(t3, {u1,
text3}).

More details on the embedded index are provided in the rest pa-
per, but an overview of answering LOOKUP(A, a, K) is as follows:
A set of Bloom filters is attached to every data file that can help de-
termine if a secondary attribute value exists in the file or not. Note
that a copy of all Bloom filters (the violet blocks in the Embedded
Index part) from all disk blocks (files contain blocks) is stored in
memory for faster access. We can efficiently answer a query for
the top-K most recent entries (e.g., tweet ids) based on a secondary
attribute value (e.g., user id = u1) with the help of the embedded
index as follows: We start from the in-memory blocks of LSM, and
move down the hierarchy one level at a time, checking the blocks’
Bloom filters, until K matched entries have been found.

We will show that the embedded index has much lower mainte-
nance cost compared with stand-alone index techniques. In terms
of implementation, the embedded index is also easy to be adopted
as the original basic operations (GET, PUT and DEL) on the pri-
mary key remain unchanged. The embedded index also simplifies
the transaction management as we do not have to synchronize sep-
arate data structures.

We implemented the proposed indexing techniques on top of
LevelDB [4], which to date does not offer secondary indexing sup-
port. Over other candidates such as RocksDB [8] we chose Lev-
elDB because it is a single-threaded pure single-node key value
store, so we can more easily isolate and explain the performance
differences of the various indexing methods.

We make following contributions in this paper:

• We propose a novel lightweight embedded indexing tech-
nique to support secondary attribute lookups in LSM-based
key-value stores (Section 3).

• We propose a variation of interval tree data structure to sup-
port efficient secondary attribute range lookups in embedded
index(Section 3).

• We propose and implement lazy and eager update variants
of stand-alone indexing on LSM-based key-value stores, in-
spired by state-of-the-art NoSQL and relational databases
(Section 4).

• We create and publish an open-source realistic Twitter work-
load generator of a mixture of reads (on primary key), lookups

2



(on secondary attributes) and writes. We also publish open-
source versions of our indexes’ implementation on LevelDB
(Section 5).

• We conduct extensive experiments to study the trade-offs be-
tween the indexing techniques on various workloads. We
also theoretically study these trade-offs (Section 5).

The rest of the paper is organized as follows. Section 2 reviews
the related work and background. We discuss on the lessons learned
and also on transactional management issues in Section 6. We con-
clude and present future directions in Section 7. The workload gen-
erator and the source code of our indexes are available at [7].

2. RELATED WORK AND BACKGROUND

2.1 Secondary Index in NoSQL databases
Cassandra [20] is a column store NoSQL database where at-

tributes can be defined in the schema but the schema is dynamic
(record may contain new attributes not predefined in the schema).
Cassandra supports secondary index. For this, Cassandra popu-
lates a separate table (column family in Cassandra’s terminology)
to store the secondary index for each indexed attribute, where the
row key of an index table is a secondary attribute value, and each
row contains a set of columns with primary keys as column names.
Upon deletes and updates in data table, instead of deleting the out-
of-date column names from index table, Cassandra uses a “read-
repair” strategy where the invalidation of these column names is
postponed to when a read on them occurs. Compared with Cas-
sandra, pure key-value stores do not have schema or column sup-
port and thus pose more challenges in supporting secondary index.
In [23], the authors show how to support secondary indexes on
HBase. Index structures are not their focus, instead they aim to of-
fer different levels of consistency between data tables and indexes
upon the writes in data tables. In contrast, in this paper we compare
different secondary index structures.

Document-oriented NoSQL databases like CouchDB [2] and Mon-
goDB [6] support storing JSON-style documents. Similarly to RDBMs,
they employ B-tree variation to support secondary indexes. In this
paper our focus is on LSM-style storage.

HyperDex [16] proposes a distributed key-value store supporting
search on secondary attributes. They partition the data across the
cluster by taking the secondary attribute values into consideration.
Each attribute is viewed as dimension (e.g., a tweet may have two
dimension tweet id and user id), and each server takes charge of a
“subspace” of entries (e.g., any tweet with tweet id in [tid1, tid2]
and user id in [uid1, uid2]). Innesto [21] applies a similar idea of
partition and adds ACID features in a distributed key-value store.
It claims to perform better on high dimension data than HyperDex.
In this paper, our focus is on a single-machine key-value store. The
distribution techniques of HyperDex and Innesto can be viewed as
complementary if we want to move to a distributed setting.

AsterixDB [10] introduces an interesting framework to convert
an in-place update index like B+ tree and R-tree to an LSM-style
index, in order to efficiently handle high throughput workloads.
Again, this can be viewed as complementary to our work as we
work directly on LSM-friendly indexes (set of keys with flat post-
ings lists).

2.2 Background

2.2.1 LSM tree

An LSM tree generally consists of an in-memory component
(level in LevelDB terminology) and several immutable on-disk com-
ponents (levels). Each component consists of several data files and
each data file consists of several data blocks. As depicted in Fig-
ure 2, all writes go to in-memory component (C0) first and then
flush into the first disk component once the in-memory data is over
the size limit of C0, and so on. The on disk components normally
increase in size as shown in Figure 2 from C1 to CL. A background
process (compaction) will periodically merge the smaller compo-
nents to larger components as the data grows. Delete on LSM is
achieved by writing a tombstone of the deleted entry to C0, which
will later propagate to the component that stores this entry.

Figure 2: LSM tree components.

LSM is highly optimized for writes as a write only needs to up-
date the in-memory component C0. The append-only style updates
mean that an LSM tree could contain different versions of the same
entry (different key-value pairs with the same key) in different com-
ponents. A read (GET) on an LSM tree starts from C0 and then
goes to C1, C2 and so on until the desired entry is found, which
makes sure the newest (valid) version of an entry will be returned.
Hence, reads are slower than writes. The older versions of an en-
try (either updated or deleted) are obsolete and will be discarded
during the merge (compaction) process.

Because of LSM trees’ good performance on handling high write
throughput, they are commonly used in NoSQL databases such
as BigTable [13], HBase [18], Cassandra [20] and LevelDB [4].
And conventionally, the in-memory component (C0) is referred as
Memtable and the on disk components are referred as SSTable in
these systems.

2.2.2 SSTable in LevelDB
As we will implement our indexing techniques on top of Lev-

elDB, we present some storage details of LevelDB as background
for ease of understanding. Level-(i + 1) is 10 times larger than
level-i in LevelDB. Each level (component) consists of a set of disk
files (SSTables), each having a size around 2 MBs. The SSTables
in the same level may not contain the same key (except level-02).
Recent Cassandra versions support this level merging (compaction)
option used in LevelDB.

Further, LevelDB partitions its SSTables into data blocks (nor-
mally tens of KB in size). The format of an SSTable file in Lev-
elDB is shown in Figure 3. The key-value pairs are stored in the
data blocks sorted by their key. Meta blocks contain meta infor-
mation of data blocks. For example, Stats Meta Blocks contain
information such as data size, number of entries and number of
data blocks. Filter Meta blocks store a Bloom filter for each block,
computed based on the keys of the entries in that block, to speedup
GET operations. Then, there are index blocks for both meta blocks
and data blocks, which store the addresses of meta blocks and data
blocks. In the end of the SSTable file is a fixed length footer that
2which is C1 in Figure 2 as LevelDB does not number the memory
component
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Figure 3: LevelDB SStable Structure.

contains the block address of the meta index and data index blocks
[4].

2.2.3 Bloom Filter
Bloom filter [12] is a hashing technique to efficiently test if an

item is included in a set of items. Each item in the set is mapped
to several bit positions, which are set to 1, by a set of n hash func-
tions. Then, the Bloom filter of a set is the OR-ing of all these
bitstrings. To check the membership of an item in the set, we com-
pute n bit positions using the same n hash functions and check if all
corresponding bits of the Bloom filter are set to 1. If no, we return
false, else we have to check if this items exists due to possible false
positives. The false positive rate depends on the number of hash
functions n, the number of items in the set S and the length of the
bit arrays m, which can be approximately computed as Equation 1.(

1−
[

1− 1
m

]nS
)n

≈
(

1− e−nS/m
)n

(1)

Given S and m, the minimal false positive rate is 2−
m
S ln2 by setting

the n = m
S ln2.

3. LIGHTWEIGHT EMBEDDED INDEX IN
LSM BASED KEY-VALUE STORE

Overview If there is no secondary index, then we perform a se-
quential scan to answer LOOKUP(Ai, a, K). The scanning would
start from the in-memory component, and then move to disk com-
ponents C1 to CL, until enough (K) matched entries are found.
This is possible because the first (and smaller) components con-
tain more recent data. Although this scan may avoid reading the
lowest (and largest) components, it is still very costly because of
the large amount of disk accesses. We use a B-tree for in-memory
data (Memtable) and Bloom filters for on-disk data (SSTable) to
dramatically speedup this scan. For the whole Memtable we create
a B-tree for each indexed secondary attribute for fast match as it
avoids to match toward every single key-value pair in Memtable.
As Memtable is normally several MBs in total, thus the B-tree is
small. As shown in Figure 1, in each SSTable file we build a set of
Bloom filters on the secondary attributes, and append the bloom fil-
ters to the end of file. Specifically, a Bloom filter bit-string is stored
for each secondary attribute for each block inside the SSTable file
(recall that a SSTable file is partitioned into blocks). Note that
these Bloom filters are loaded in memory (the same approach is
used currently with the Bloom filters of the primary key in systems
like Cassandra and LevelDB). Hence, the scan over the disk files
in converted to a scan over in-memory Bloom filters. We only ac-
cess the disk blocks which the Bloom filter returns as positive. We
refer to this index as Embedded Index as no separate data files are

created, but instead the Bloom filters are embedded inside the main
data files.
LOOKUP using Embedded Index. The general LOOKUP pro-
cedure in a LSM based database is already explained above. How-
ever, we further clarify some important points here. Consider the
sequence of operations PUT(t1,{UserID: u1},..., PUT(t1,{UserID:
u2} followed by LOOKUP(UserID,u1). When the LOOKUP is is-
sued, it is possible that entry (t1,u1) exists in a lower component,
say C2, while (t1,u2) exists in a higher component, say C1. Of
course, eventually (t1,u1) will be deleted during a compaction pro-
cess. Now, when the LOOKUP is executed, the Bloom filter of the
block that contains (t1,u1) will be positive and hence t1 would be
incorrectly returned. To avoid this, we issue a GET(t1) to check that
u1 is returned, and only then output t1. Note that a similar strategy
is needed as post-processing in the lazy stand-alone indexing strat-
egy described in Section 4.2, as is also the case for state-of-the-art
secondary stand-alone indexes on column-stores like Cassandra.
RANGELOOKUP using Embedded Index. To support the range
queries on secondary attributes we maintain an interval tree based
index structure. This index maintains an interval corresponding to
the range of secondary attribute values for each data block in all
the SSTables. It also stores a largest timestamp (sequence number)
corresponding to each file block interval. Given a range query, this
interval tree will return list of the blocks’ pointer whose interval in-
tersects with the given range and the list is sorted by the maximum
timestamp value. The interval tree is explained with an example
in Figure 4 where ranges (intervals) are constructed based on lexi-
cographic ordering. If we issue an interval query [n,o] toward the
interval tree in Figure 4, it will return [c,o], [b,n], [n,w], [l,s] and
[g,n] in that order. Note that [b,d] is not returned because it does
not intersect with the range [n,o].

Figure 4: Interval tree example

We have also implemented a B-Tree which contains a inverted
index list of secondary values for current memtable.
GET, PUT and DEL A key advantage of the embedded index is
that only small changes are required for all three interfaces: GET(k),
PUT(k,v), and DEL(k). Obviously, GET(k) needs no change as it
is a read operation and we have only added Bloom filter and inter-
val tree information to the data files. PUT and DEL don’t have to
worry about building the secondary attributes Bloom filters but just
need to update the B-tree for the Memtable data.
Compaction However, we do need to change the flush process
(in-memory component to first on disk component) and the merge
(compaction) process (newer on disk component to older compo-
nent). That is, every time an SSTable file is created, we compute the
Bloom filter per block for each to-be-indexed attribute. Note that
this operation is currently done for the primary key, but we extend
it to the secondary attributes. We also added the intervals (range
of the secondary attribute values) for the newly created SSTable
blocks into the interval tree. Because SSTable is immutable, after
its creation Bloom filter and intervals remain unchanged as long as
the SSTable is valid (or else will be discarded).
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To make the interval tree used for range queries consistent with
the database, we modified the compaction process. Compaction
merges a number of SSTable files to create a new sets of SSTable
files. So for each compaction process, we delete all the blocks of
the old SSTable files and add all the blocks of the newly created
SSTable files. These operations in the compaction process can be
summarized in Figure 5.

Figure 5: Interval Tree maintained in the compaction

To summarize, the embedded index dramatically accelerates LOOKUP
queries, while incurring minimal cost on writes and reads on the
primary key. Our experiments in Section 5 confirm the effective-
ness of this lightweight indexing technique.

3.1 Embedded Index Implementation in Lev-
elDB

LevelDB, among NoSQL databases like Cassandra, already em-
ploys Bloom filters to accelerate reads on primary keys. Several
types of meta blocks are already supported in LevelDB and we
highlight the filter meta block, which stores a Bloom filter on the
primary keys for each data block. As LevelDB already natively
supports filter meta blocks, we just have to modify it to add sec-
ondary attribute Bloom filters as shown in Figure 6.

Figure 6: Filter Meta Block change on LevelDB to support sec-
ondary attribute index.

Support top-K retrieval: LOOKUP(Ai, a, K)
We mentioned above that when performing LOOKUP, we scan

one level at a time until K results have been found. A key challenge
is that within the same level there may be several entries with the
queried secondary attribute value val(Ai) = a, and these entries are
not stored ordered by time (but by primary key). Fortunately, Lev-
elDB, as most other NoSQL systems, assigns an auto-increment
sequence number to each entry at insertion, which we use to per-
form time ordering within a level. Hence, we must always scan
until the end of level, before termination.

To efficiently compute the top-K entries, we maintain a min-heap
ordered by the sequence number. If we find a match (i.e. we find
a record that has secondary attribute value val(Ai) = a, then if the
heap size is equal to K, we first check whether it is an older record
than the root of the min heap. If it is a newer match or the heap
size is less than K, then we check whether it is a valid record (i.e.
whether it is deleted or updated by a new record in data table). We
check this by calling a GET (k) for this record in the data table. If
it is not a deleted record, we check the secondary attribute value
whether it matches with the entry that we found for our result.

We also maintain a hashset of K keys representing the already
fetched results to make sure no duplicate entry is present in the re-
sults. If a duplicate entry comes with a greater sequence number,
we update the min-heap with this newer entry and delete the old
duplicate. Once the scan finishes a whole level with the heap con-
taining K entries, it can safely stop, perform heapsort and return
the results in the heap as decreasing order of the sequence number
of each entry as the LOOKUP query results. We present the pseu-
docode of LOOKUP in LevelDB implementation in the Appendix.
Support top-K retrieval: RANGELOOKUP(Ai, a,b, K)

Similar to LOOKUP, to efficiently compute the top-K entries, we
also maintain a min-heap ordered by the sequence number. So we
first search in the in-memory B-Tree for all the records for the given
secondary attribute value range [a,b]. If we find the top-K here, we
stop and return the results. If not, then we search in the interval tree
to find all the blocks that have ranges of secondary attribute values
intersected with given range. We iterate through the blocks one
by one in sorted order of maximum timestamp, and for each block
we linearly search for any records which have a secondary attribute
value in the range [a,b]. We keep pushing any successful matched
records in our min-heap. We stops when next block in the iterator
has a smaller maximum timestamp value than the timestamp value
of the min record in the min-heap.

3.2 Analysis of Cost for Operations with Em-
bedded Index

Overhead on GET/PUT/DEL queries. As discussed above, the
embedded index does not incur much overhead on these opera-
tions. It only adds very small overhead on the compaction pro-
cess to build a Bloom filter for each indexed attribute per block (if
RANGELOOKUP is supported then there is also small overhead
on maintaining the interval tree) and small overhead on updating
the B-tree for Memtable.
LOOKUP query. A Bloom filter is a probabilistic data structure,
i.e., it returns false positives with a probability. This probability
is related to the bits array size and the number of entries a bloom
filter already mapped. We study more details in experiments. Here
we give a general theoretical analysis on the number of SSTable IO
during answering LOOKUP query using embedded index.

In LevelDB a level has 10 times the number of SSTable files (and
thus blocks) than its upper level. As a consequence, the number
of IOs grows exponentially when scanning lower levels. Thus a
smaller K in LOOKUP query is faster, because of the higher chance
that the LOOKUP query can be satisfied in the first few levels.

Assume the number of blocks in level-0 is b (and thus level-i is
approximately b ·10i). As discussed in Section 2.2 (see Equation 1),
the minimal false positive rate of the bloom filter is 2−

m
S ln2, denoted

as f p. Thus the approximate number of block accesses on level-
i for LOOKUP due to false positives is f p · b · 10i. Hence, if a
LOOKUP query needs to search on d levels, the expected block
accesses are ∑

d
i=0( f p · b · 10i) =

f p·b·(10d+1−1)
9 . If matched entries

are found in H blocks, the total number of block accesses is H +
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f p·b·(10d+1−1)
9 . Note that H may be greater than K as we have to go

to the end of the level for finding most recent K records.
The number of table accesses for different operations in Embed-

ded Index are presented in Table 2.

Table 2: Table accesses for operations in Embedded Index. Assume
the LOOKUP query needs to search in d levels of SSTables.

Action Read Data Write Data
GET(k) 1 0
DEL(k) 0 1
PUT(k,v) 0 1

LOOKUP(Ai, a, K) H +
f p·b·(10d+1−1)

9 0

The embedded index will achieve better LOOKUP query perfor-
mance on low cardinality data (i.e., an attribute has small number
of unique attribute values), because fewer levels must be accessed
to retrieve K matches.

4. STAND-ALONE INDEX IN LSM BASED
KEY-VALUE STORE

A stand-alone secondary index in a key-value store can be logi-
cally created as follows. For each indexed attribute Ai, we build an
index table Ti, which stores the mapping from each attribute value
to a list of primary keys, similarly to an inverted index in Informa-
tion Retrieval. That is, for each key-value pair 〈k,v〉 in data table
with val(Ai) not null, k is added to the postings list of val(Ai) in Ti.
LOOKUPs can then be supported straightforwardly by this stand-
alone index.

Compared with embedded index, stand-alone index could have
overall better LOOKUP performance, because it can get all candi-
date primary keys with one read in index table in eager updates (or
up to L reads when there are L levels in the case of lazy updates as
we discuss below). However, stand-alone index is more costly on
the maintenance of index table upon writes (PUT(k,v) and DEL(k))
in data table in order to keep the consistency between data and in-
dex tables.

Write Challenges. Recall that PUT(k,{Ai : ai}) may be an in-
sert or update. We assume a single secondary attribute Ai for pre-
sentation simplicity. Given this PUT, to maintain the consistency
between Ti (index table for attribute Ai) and data table, two steps
need to be taken:

1. If the PUT is an update, that is, there was previously a PUT(k,{Ai :
a′i}), then we must remove k from the postings list of a′i.

2. Add k to the postings list for ai in Ti.

Note that for DEL(k) operations only the first step must be taken.
The first step requires issuing GET(k) on data table to get a′i if it

exists. Since the reads on LSM trees are much slower than writes (if
not considering cache), this could significantly slow down writes.
To avoid this, we can apply three options to postpone the removal
of k from a′i’s list in index table Ti. One simple option is that we do
not handle this step at all. This one should be used for workloads
with very low ratio updates/deletes. For an append-only workload
(i.e., no delete or update on existing entries), this strategy performs
best. The second one is to do the cleanup of invalid keys during
compaction on index table. That is, when a compaction merge an
old file to a new file, it checks the validation of each key in the old
file and decides whether writes a key to the new file. This process
could make the compaction process more IO intensive and thus af-
fects the overall performance of the database. Another option is to

Figure 7: Example of stand-alone index with eager updates and its
compaction.

do periodic cleanup on SSTables when the system is not busy. In
our experiments we implement the first option.

For the second step, we present two options to maintain the con-
sistency between data and index tables, eager updates and lazy up-
dates, discussed in Sections 4.1 and 4.2 respectively. We have im-
plemented both options on LevelDB.

4.1 Stand-alone Index with Eager Updates
Eager Updates (PUT) Upon PUT(k,{Ai : ai}), a stand-alone index
with eager updates first reads the current postings list of ai from
index table, adds k to the list and writes back the updated list. This
means that, in contrast to the lazy update, only the highest-level
posting list of ai needs to be retrieved, as all the lower ones are
obsolete.

Example 1. Assume the current status of a database shown in Ta-
ble 3. Now suppose PUT(t3, {”UserID": u1, “Text”: “t1 text”})
is issued, which updates the UserID attribute of t3 from u2 to u1.
Figure 7 depicts a possible initial and final instance of the LSM
tree.

Table 3: TweetsData table storing tweets data.

Key Value
t1 {“UserID”: u1, “text”: “t1 text”}
t2 {“UserID”: u1, “text”: “t2 text”}
t3 {“UserID”: u2, “text”: “t3 text”}
t4 {“UserID”: u2, “text”: “t4 text”}

Note that the compaction on the index tables works the same as
the compaction on the data table.
LOOKUP A key advantage of eager updates is that LOOKUP(Ai,
a) only needs to read the postings list of a in the highest level in
Ti. However, there could be invalid keys in the postings list of a.
Thus, similarly to the embedded index LOOKUP post-processing,
for each returned key k, we need to call a GET(k) on data table and
make sure val(Ai) = a. To support top-K LOOKUPs, we maintain
the postings lists ordered by time (sequence number) and then only
read a K prefix of them. The pseudocode of LOOKUP(Ai,a,K) is
shown in the appendix.

4.2 Stand-alone Index with Lazy Updates
Lazy updates (PUT) The eager update still requires a read oper-
ation to update the index table for each PUT, which significantly
slows down PUTs. In contrast, the lazy update works as follows.
Upon PUT(k,{Ai : ai}) (on the data table), it just issues a PUT(ai, [k])
to the index table Ti but nothing else. Thus the postings list for ai
will be scattered in different levels. Figure 8 depicts the update of
index table by the lazy updates strategy upon the PUT in Exam-
ple 1.
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Figure 8: Example of stand-alone index with lazy updates and its
compaction.

Support top-K query: LOOKUP(Ai, a, K) Since the postings
list for a could be scattered in different levels, a query LOOK(Ai,
a, K) needs to merge them to get a complete list. For this, it checks
the Memtable and then the SSTables, and moves down in the stor-
age hierarchy one level at a time. Note that at most one postings
list exists per level. The pseudocode of LOOKUP is shown in the
appendix.
Support top-K range query: RANGELOOKUP(Ai, a, b, K) To
support range query RANGELOOKUP(Ai, a, b, K) on secondary
attribute in Stand-alone index, we used range query API in Lev-
elDB on primary key. We issue this range query on our index table
for given range [a,b]. For each match x, we issue a LOOKUP(Ai,
x, K) on index table. Each LOOKUP will return a list of results
with size no larger than K for x which is sorted by time. To return a
top-K among all the records in range [a,b], we need to merge all the
results and sorted them by timestamps. For that purpose, we again
changed in the compaction and stored the sequence number of each
entry in the postings list. To maintain the top-k efficiently we used
a min-heap of size K similar to our LOOKUP implementation in
Embedded Index. So we push each record in the postings list to
this min-heap and we keep continue until we find all the matches
in the index table in this range.

4.3 Analysis of Cost for Operations on Stand-
alone Index

Overhead on GET/PUT/DEL queries Assume we have an append-
only workload, and hence no maintenance on index table is needed
and thus incurs no overhead for GET and DEL query on data ta-
ble. However for a PUT query on data table, a Read-Update-Write
process is issued on the index table by the eager update variant, in
contrast to only one write on the index table in the lazy updates
variant. Table 4 shows the number of table accesses for these three
queries.
LOOKUP For eager updates, only one read3 on the index table is
needed to retrieve the postings list, as all lower level lists are in-
valid. Then, for each key in the top-K list, it issues a GET query
on the data table. Hence, it takes a total of K +1 disk accesses for
LOOKUP(Ai, a, K) if there exist K matched entries. In contrast for
lazy updates, a read on the index table may involves up to L (num-
ber of levels) disk accesses (because in worst case the postings list
is scattered across all levels). Thus the total cost of LOOKUP(Ai, a,
K) is (K +L) disk accesses. Note that this cost would be higher if
we also had updates in the workload since we would have to check
for invalid entries.

5. EXPERIMENTS

3assuming there is no false positive by the Bloom filter on the pri-
mary key in the index table

5.1 Experimental Setting
We run our experiments on machines with Quad Core Intel(R)

Xeon(R) E3-1230 v2@3.30GHz CPU and 16GB RAM. The oper-
ating system used in these machines is CentOS version 6.4.

We collected 18 millions of tweets with overall size 9.88 GB (in
JSON format) which have been posted and geotagged within New
York State. Then we ran experiment using different benchmark
files having different read write ratio and different read lookup ra-
tio. We selected TweetID as the primary key attribute and UserID
as the secondary attribute for indexing.

5.2 Benchmark
We are aware of several public workloads for key-value store

databases available online such as YCSB [14]. However, as far
as we know there are no workload generator which allows fine-
grained control of the ratio of queries on primary to secondary at-
tributes. Thus, to evaluate our secondary indexing performance, we
created a realistic Twitter-based workload generator. The genera-
tor works on a sample of tweets e.g., 1% sample collected through
Twitter Streaming API. Each tweet is a PUT on the database. A
user can specify a read-to-write ratio to generate benchmarks with
desired Reads/Writes ratio. The primary-to-secondary-reads ratio
parameter allows the user to adjust the ratio of primary key reads
(GET) to secondary index reads (LOOKUP). In our experiments,
we set this parameter to 100. When generating the benchmark file,
one read (primary key read and secondary attribute lookup) is gen-
erated based on the probability of each candidates in the most re-
cent writes. We have one another integer parameter read buffer size
for this: we maintain the frequency of each primary key / secondary
attribute values in the most recent read buffer size number of writes
in order to probabilistically choose when candidates to read. In our
experiments we set it to 50K.

5.3 Experimental Evaluation
In the section we evaluate our secondary indexing techniques.

Because the support of RANGELOOKUP requires to maintain ex-
tra data structures which incurs overhead, thus we report the perfor-
mance of versions with and without RANGELOOKUP supported
separately. We first report the performance the indexing variants
(Stand-alone Index with Eager Updates, Stand-alone Index with
Lazy Updates, Embedded Index) without RANGELOOKUP sup-
ported in Section 5.3.1. We study factors that could affect the per-
formance in Sections 5.3.2, 5.3.4 and 5.3.3. We show the space
efficiency for the indexing variants in Section 5.3.5. We present
the performance of variants with RANGELOOKUP supported in
Section 5.3.6.

5.3.1 Performance of indexing methods without the
support of RANGELOOKUP

We conduct our experiments on workloads with different reads-
to-writes ratios which represent different use cases. Figures 9 and 10
show the overall, GET, PUT, and LOOKUP performance of these
indexing methods on write heavy ( Reads

Writes =
1
9 ) and read heavy work-

loads ( Reads
Writes = 9), respectively. Note here reads include GET and

LOOKUP queries. We also measure the performance when no sec-
ondary index is built, in which we scan the database sequentially to
find the matched entries to for answering LOOKUP queries.

On both workloads, we set primary-to-secondary-ratio to 100
and used a fixed bits per key = 100 for Bloom filter. Note that
both benchmarks both contain 20 millions operations. Shown in
Figures 9 and 10, we record the performance once per 1 millions
operation top-K = 5 in LOOKUP queries.
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Table 4: Table accesses for operations. Assume l attributes are indexed on the primary table.

Action Read Data Write Data Read Index Write Index
GET(k) 1 0 0 0
DEL(k) 0 1 0 l
PUT(k,v) 0 1 l (eager), 0 (lazy) l
LOOKUP(Ai, a, K) K 0 1 (eager), L (lazy) 0

(a) Overall performance

(b) PUT performance

(c) GET performance (d) LOOKUP performance (Top-
K = 5)

Figure 9: Performance of different indexing variants on write heavy
benchmark.

It shows in Figure 9 that Stand-alone Index with Eager Updates
cannot scale for large dataset. Embedded Index achieves very sim-
ilar GET performance as Stand-alone Index with Lazy Updates but
give much better PUT performance. Thus on the Write Heavy
benchmark, Embedded Index gives better overall performance than
Stand-alone indexes (around 40% better than Lazy Updates)..

However, on the Read Heavy workload, the Lazy Updates ver-
sion gives the best overall performance among these indexing tech-
niques as shown in Figure 10.

5.3.2 Performance of indexing methods varying key-
value pair size

We study the effect of the key-value pair size on the performance

(a) Overall performance

(b) PUT performance

(c) GET performance (d) LOOKUP performance (Top-
K = 5)

Figure 10: Performance of different indexing variants on read
heavy benchmark.

of these indexing techniques. For that, we only keep two attributes
(user id and timestamp) of each tweet in the value. The data con-
tains the same number of tweets but the total size is reduced to
1.24GB in JSON format (vs. 9.88 GB without removing attributes).
We generate a new workload using the same parameters as we used
in former experiments. We present the performance results on the
write heavy workload ( Reads

Writes =
1
9 ) in Figure 11.

We observe that the performance of all variants improve with
smaller key-value pairs compared with the results shown in Fig-
ure 9. However, we see the advantage of Embedded Index over
Lazy Updates in terms of overall performance is larger. Because
each data block contains relatively more key-value pairs, Embed-
ded Index has higher chance to check smaller number of SSTables

8



files and levels to satisfy a LOOKUP query.

(a) Overall performance

(b) PUT performance

(c) GET performance (d) LOOKUP performance (Top-
K = 5)

Figure 11: Performance for different indexing variants on write
heavy benchmark with smaller key-value pairs.

5.3.3 LOOKUP Performance of Embedded Index vary-
ing top-Ks

In this section, we specifically study the LOOKUP performance
with different Ks on Embedded Index with all other database set-
tings unchanged. Figure 12 shows the average running time of
LOOKUP queries among the 20 millions of operations in the Write
Heavy workload. We can see that as K increases, the LOOKUP
performance decreases as expected.

5.3.4 LOOKUP Performance of Embedded Index vary-
ing Bloom filter lengths

The length of each Bloom filter used in Embedded Index also
has affect on LOOKUP performance in two folds: (1) with larger
Bloom filter, the false positive rate will drop thus the number of
blocks to be loaded into memory is smaller, and (2) the cost of

Figure 12: LOOKUP performance with different top-K on the write
heavy benchmark.

checking each Bloom filter is higher because more hash functions
are applied for each key to check its existence as the Bloom filter
length increases.

Figure 13: LOOKUP performance with different bloom filter set-
ting (bits per key) on the write heavy benchmark.

We conducted the experiment by varying the value of bits per
key from 20 to 1000. Figure 13 shows the average performance
of LOOKUPs in the Write Heavy workload. Here we can see that
the LOOKUP performance starts to increase with increasing bits
per key setting of Bloom filter (20 to 200) as the false positive rate
decreases. But then the performance decreases with larger value of
bits per key where the false positive rate is low enough but the cost
of checking Bloom filters increases.

Table 5: Averaged false positive rates of LOOKUP queries and
final database sizes running Write Heavy workload under different
settings of bits per key for Bloom filter.

Bits Per Key Database Size False Positive Rates
20 10,127 MB 0.64%
50 10,256 MB 0.44%
100 10,470 MB 0.08%
200 10,899 MB 0.08%
500 12,186 MB 0.08%
1000 14,325 MB 0.08%

We also show the space tradeoffs in Table 5. As the bits per key
increases, the bloom filter takes more space. In our experiment we
set bits per key as 100, because the LOOKUP performance is very
close to setting it as 200 to 300 but with reasonable space overhead.

5.3.5 Space efficiency of indexing methods
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Table 6: Database size of different indexing techniques on the two workloads. Small Write Heavy denotes the workload in which each value
only contains two attributes. The numbers in parenthesis are the overhead over LevelDB with no secondary index built.

Implementation Read Heavy Write Heavy Small Write Heavy
LevelDB (no secondary index) 1,569 MB 10,249 MB 1,445 MB
Eager Updates 1,615 MB (2.9%) 10,886 MB (6.2%) 2,102 MB (45.4%)
Lazy Updates 1,608 MB (2.5%) 10,610 MB (3.5%) 1,825 MB (26.3%)
Embedded 1,590 MB (1.3%) 10,470 MB (2.2%) 1,659 MB (14.8%)

Table 6 shows the database sizes of different indexing techniques
on the workloads. It shows that Embedded Index is more space ef-
ficient than Stand-alone indexing techniques. Note that for each in-
dexing variant, its absolute values of the overhead on Small Write
Heavy and the overhead on Write Heavy are very close. For in-
stance, the overhead of space in Embedded Index is mainly from
Bloom filters which is decided by the number of entries and bits
per key setting. Thus as Small Write Heavy and Write Heavy have
same number of key-value pairs thus the total space of Bloom filter
is unchanged.

5.3.6 Performance of indexing methods with the sup-
port of RANGELOOKUP

Through former experiments, we see Eager Updates will not
scale for large dataset. Thus, we only implement RANGELOOKUP
support on Stand-alone Index with Lazy Updates and Embedded
Index.

Because LSM components are time correlated, thus Embedded
Index combined with interval tree is efficient for RANGELOOKUPs
only when secondary attribute is correlated with time. To test the
performance with RANGELOOKUP, we build the secondary index
on the CreationTime attribute instead of UserID.

Figure 14 compares the performance of Lazy Updates and Em-
bedded Index on the write heavy workload. It shows that the Em-
bedded Index achieve very close overall performance than Lazy
Updates in this workload. In general, Embedded Index gives bet-
ter RANGELOOKUP and PUT performance while Lazy Updates
advantages in GET performance.

5.3.7 Effect for multiple secondary attribute indexes
We have shown experiments on one secondary index. From these

results, we can intuitively discuss the performance if we have more
indexes on other secondary attributes. Overall performance of Em-
bedded Index will remain similar as we have seen there is very
small overhead on PUT and GET by adding bloom filters for sec-
ondary attributes. But for Stand-alone indexes, PUT latency will
increase linearly with the number of secondary indexes, because
we have to write to different index tables every time we issue a
PUT in the primary data table. The database size will also increase
with the number of indexes for all of them, but we have already
seen that Embedded Index is more space efficient than the Stand-
alone indexes.

6. DISCUSSION
Lessons learned. The experimental results show the trade-offs be-
tween the three indexing strategies. As expected, no solution is best
for all workloads.

Since the Embedded Index only incurs very small space over-
head compared to the other two, it is a better choice in the cases
when space is big concern, e.g., to create a local key-value store on
a mobile device. When space consumption is not a major concern,
the Embedded Index is still favorable when the query workload
contains relatively small (< 5%) ratio of LOOKUP queries over
GETs but very heavy writes throughput (> 50% of all operations).

(a) Overall performance

(b) PUT performance

(c) GET performance (d) RANGELOOKUP performance
(Top-K = 5)

Figure 14: Performance for the two RANGELOOKUP supported
indexing variants on write heavy benchmark.

For instance, in wireless sensor network where a sensor generates
data of form (measurement id, temperature, humidity), the database
must support some basic querying capabilities in order for the net-
work to support queries [19, 15]. E.g., A monitor dashboard can
be used to query the data from certain sensor or lookup the record
with temperature in a range (if the sensor is recording temperature).
Hence, in these applications reads and lookups are rare but writes
have very high rate.

A limitation of Embedded is that it does not support RANGELOOKUP.
We facilitate this by extending RANGELOOKUP with interval tree.
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Table 7: Use cases for different indexing strategies.

Example Applications Primary Key Secondary Keys Suggested Index
Wireless Sensor Network Record ID Sensor ID Embedded Index
Facebook or Twitter Post ID User ID Stand-alone Index with Lazy Updates
Snapchat or Whatsapp Message ID User ID Stand-alone Index with Eager Updates

This is efficient for RANGELOOKUP operations when the sec-
ondary key is somewhat correlated with the primary key (or by
time if records were stored by time in SSTables), but inefficient
for uncorrelated attributes.

In other cases, a Stand-alone index is a better choice. The Lazy
Updates variant adds more complexity on the cleanup of updated
keys but achieves overall better write performance than Eager Up-
dates. Thus, the Lazy Updates variant is preferable over Eager Up-
dates when the workload involves very few updates. For instances,
it is reported that there are much more reads than writes in Face-
book and Twitter [5, 1].

Otherwise when the workload involves high ratio of updates in
value or deletes, the Eager Updates version is a better choice. In
the big data era, due to the cheap disk lots of applications do not
remove data. However, we can see popular services with high ratio
of deletes in database storage. For instance, applications such as
Snapchat and WhatsApp have read heavy workloads like Facebook
and Twitter. However they involves more deletes. E.g., messages
in Snapchat and WhatsApp will be deleted from the server when
messages expire [3, 9]. Thus in their databases they should have
high ratio of deletes, which makes Eager Updates more favorable
than Lazy Updates.

Example use cases for the three index methods are summarized
in Table 7. In the work of [11], the authors collected traces from
Facebook’s Memcached (a popular in-memory key-value store) de-
ployment which give more examples of practical workloads with
high ratio of reads, writes or deletes.

These conclusions are summarized in Figure 15.
Transaction Support. Transaction are commonly supported in
all kinds of RDBMS. However, NoSQL systems contain limited
support for it. For instance, a recent Cassandra release started to
support a “light-weight” transaction which supports the get-update-
write process of a single data entry as an atomic operation. Similar
functionality is also offered by MongoDB, while systems like Hy-
perDex and AsterixDB offer stonger supports on transactions.

LevelDB implements GET, PUT and DEL as atomic operations,
and also supports transactional operation of several writes on a sin-
gle table, i.e., a write batch consists of several PUT and DEL. As
we already explained, the embedded index just writes more filter
blocks during PUTs to LevelDB, and hence does not break the
atomicity of these basic operations. However, in stand-alone in-
dex implementations, PUT and DEL operations introduces multi-
ple reads/writes across index and data tables. To keep them atomic,
special transaction management is needed, which we leave as fu-
ture work.

7. CONCLUSIONS
In this paper we study three secondary indexing methods for pure

key-value stores, namely Stand-alone Index with Eager Updates,
Stand-alone Index with Lazy Updates and Embedded Index. We
propose a new version of interval tree combined with Embedded
Index to support range queries on secondary attribute.

We implement these indexing methods over LevelDB and con-
duct extensive experiments to examine their performance. The ex-

Figure 15: Overall process to decide which secondary index strat-
egy to use according to query and data workload.

perimental results show the tradeoffs between the three indexing
techniques. We argue the appropriate choice of indexing techniques
for different workloads and applications.
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APPENDIX
A. ALGORITHMS FOR LOOKUP IN EM-

BEDDED INDEX
Algorithm 1 LOOKUP Procedure using Embedded Index

1: Create Min-Heap H;
2: for table in Memtable do
3: for 〈k,v〉 in table do
4: if val(Ai) == a then
5: if H.size() == K∧H.top.seq < 〈k,v〉.seq then
6: H.pop();
7: H.put(〈k,v〉);
8: else if H.size()< K then
9: H.put(〈k,v〉);

10: if H.size() == K then
11: return List of K pairs in H
12: for v = 0→ L do
13: for sstable j in level-v do
14: for blockk in sstable j do
15: if blockk.bloom f ilter(Ai).contains(a) == F then
16: NEXT
17: load blockk of sstable j in memory;
18: for 〈k,v〉 in blockk do
19: if val(Ai) == a∧〈k,v〉 is valid then
20: if H.size() == K∧H.top.seq < 〈k,v〉.seq then
21: H.pop();
22: H.put(〈k,v〉);
23: else if H.size()< K then
24: H.put(〈k,v〉);
25: if H.size() == K then
26: return List of K pairs in H
27: return List of pairs in H

B. ALGORITHMS FOR LOOKUP IN STAND-
ALONE INDEX WITH EAGER UPDATES

Algorithm 2 LOOKUP based on Eager Updates

1: H← ();
2: Primary key list L← return of GET(a) on index table Ti. // Suppose the

order is maintained as recent key to older keys
3: for k in L do
4: 〈k,v〉 ← return of GET(k) on data table.
5: if val(Ai) == a then
6: H.add(〈k,v〉)
7: if H.size() == K then
8: BREAK
9: return H

C. ALGORITHM FOR LOOKUP IN STAND-
ALONE INDEX WITH LAZY UPDATES

Algorithm 3 LOOKUP Procedure based on Lazy Updates

1: H← ()
// starts from Memtable (C0) and then moves to SSTable, C1 is LevelDB’s level-0
SSTable.

2: for j from 0 to L do
3: if val(Ai) is not in C j then
4: NEXT
5: List of primary keys P← the value of Ai(v) in C j
6: for k in P do
7: 〈k,v〉 ← return of GET(k) on data table.
8: if val(Ai) == a then
9: H.add(〈k,v〉)

10: if H.size() == K then
11: return H
12: return H
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